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Methods Summary 

 

We simulated alternative policies using a spatial logistic fish population model coupled with a 

game theoretic fishery economic model. Fish stock is observed and then harvested in N EEZ and 

one HS patches, generating a residual stock that grows and disperses among the patches. 

Different combinations of N and proportion of the species’ range in EEZs versus HS represent 

alternative geopolitical and biogeographic scenarios. Fish movement among patches is 

represented by a dispersal kernel with enhanced local site fidelity. Fishery profit in a patch is a 

function of revenue from harvest (yield) and market price and cost of fishing in relation to local 

fishing effort and stock density. Solutions were obtained by solving for the game theoretic Nash 

equilibrium among N players (EEZ nations traversed), where each player simultaneously chooses 

the (set of) harvest effort level(s) that maximizes profit, taking as given the effort levels by the 

other players. Two HS open scenarios were considered: one that limits harvest in the HS to N 

players (“HS open (N)”), and one that allows open access HS (“HS open (OA)”). In the latter, the 

HS represent a true commons and the stock is harvested down to a density where marginal profit 

is zero. Taking this as given, each of the N players chooses a harvest effort level for its EEZ that 

maximizes the player’s profit, given the other players’ decisions. In HS open (N), each player has 

two choice variables, harvest effort in its EEZ and in the HS, that are determined simultaneously 

among all players, and HS profit is distributed proportionally to the players’ HS effort levels. 

Under the HS closed scenario players are limited to choosing effort levels in the EEZs, except 

when non-compliance was considered. In that case, the EEZ players exhibit positive efforts in 

the HS, up to a maximum level equal to what they exhibited in HS open (N). Taking as given the 

level of HS closure (non-)compliance, the players then choose harvest effort levels in their EEZs 

to maximize profit. Full Methods details are given below. 

 

Methods Details 

 

There are N+1 patches: N EEZs and 1 high seas (HS). By convention, we assumed that patch 

N+1 is the high seas. The equation of motion in patch i is: 
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The timing is thus: the present period stock density in each patch  
tjx ,  is observed and then 

harvested  
tjh ,  giving residual stock density  

tje , , which then grows   tjeg , , and, following 

conversion to stock abundance (via multiplication by patch area, Aj), disperses across the system 

 jiD . The resulting stock abundance is divided by patch area, Ai, to indicate stock density at the 
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beginning of the subsequent period  1, tix . The system is divided into fraction Z in the high seas 

and fraction (1-Z) that is divided equally among the N EEZs. Thus each EEZ represents fraction 

  NZQ  1 of the system. The entire system is set to area of 1, thus Ai=Z for the high seas patch 

and Ai=Q for each EEZ patch. 

 

Harvest (i.e., yield) is measured in units of biomass abundance and is calculated in relation to 

stock density, habitat area and harvest effort, Ei, in each patch: 

 

 iititi EfAxh ,,  ,        (2) 

 

where  iEf  is the fraction of stock harvested and is an increasing function of harvest effort. 

Residual stock density, or density of escapement from harvest, is thus: 

 

  ititi Efxe  1,, .        (3) 

 

Patch-i harvesters earn price pi per unit harvest, and marginal harvest cost is a decreasing 

function of resource stock density in patch i. Given hi,t harvest in patch i, profit in the patch is: 
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where c′(s) < 0 (i.e., higher resource stock density reduces per-unit harvest cost). 

 

 

Parameters 

 

a) Harvest 

We used the exponential survival function for calculating harvest and escapement: 
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where q is a catchability coefficient modulating effort’s effect on harvest and, without loss of 

generality, is set to 1.  

 

b) Growth 

We represented growth of the stock using the discrete-time logistic function [Schaefer logistic 

model; 1]: 

 

   Kereeeg iiii  1 ,        (6) 

 

which is the same across all patches. We set stock carrying capacity to K=1 unit biomass density. 

For representing tuna and other large-bodied marine fish typically the focus of pelagic high seas 

fisheries we used intrinsic population growth rates r = 0.1-0.3 [2]. 
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c) Dispersal  

Dispersal was based a “common pool” model that we modified to consider enhanced site fidelity 

(i.e., self-recruitment). The fishery species traverses N EEZs and the high seas. With no 

enhanced site fidelity, dispersal depends only on the proportional areas in the system; in that case 

the dispersal matrix is: 
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where a row-column cell value represents the fraction of dispersal from a source to destination 

patch (see Equation 1); each row sums to 1 thus the system is closed. Thus, for example, given 

42% of a species’ range in N=10 EEZs and the remainder in the high seas (i.e., Z=0.58), fish 

self-recruitment rates are DEEZ,EEZ = 4.2% in each EEZ and DHS,HS = 58% in the high seas. 

Fishery species exhibit varying degrees of site fidelity [3-5]. With enhanced site fidelity, the 

fractions of self-recruitment (i.e., diagonal cells in D) are increased from the Q (EEZ) and Z 

(high seas) values in equation (7), up to a maximum of 1 (i.e., 100% self-recruitment). 

Concurrently, the off-diagonal cells in each row (i.e., fractions of cross-recruitment) 

counterbalance the increase in self-recruitment with a commensurate decrease that is distributed 

among the destination patches (columns) in proportion to their area. Thus enhanced self-

recruitment is balanced by reduced cross-recruitment and the rows in D still sum to 1. 

Enhancement of self-recruitment is governed by the parameter S, where 0 ≤ S ≤ 1.  This gives 

rise to the following dispersal matrix: 
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If S=0, enhanced self-recruitment is removed and we revert to the common pool dispersal kernel 

(i.e., equation (7)). If S=1, we have 100% site fidelity; no dispersal occurs out of any patch. For 

all of the figures in the main text and SI (except Fig. S5, where we show effects of 0 ≤ S ≤ 1) we 

set S=0.75, representing conservatively high self-recruitment rates within each patch. Thus, for 

example, the baseline scenario N=10 EEZs, Z=0.58 and S=0.75 indicates self-recruitment rates of 

DEEZ,EEZ = 76% in each EEZ and DHS,HS = 90% in the high seas.  

 

d) Economics 

Price per unit harvest was set to p = 1. Marginal cost of harvest follows the “stock effect” 

function,   ssci   [6,7], where the scaling parameter was set to 10% of the carrying capacity 

density of the stock, θ = 0.1K. Below this stock density marginal cost exceeds price and it is 

unprofitable to harvest.  All else equal, this cost function suggests that a completely open access 

global fishery would harvest the stock down to 10% of its virgin biomass level. Although they 
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exist in practice, we do not consider economic subsidies to fisheries (e.g., by their home 

country). Subsidies are expected to generate an increase in fishery harvest rate because they 

contribute to fishery revenue and thus enable them to profitably drive stocks to lower densities 

[8]. 

 

e) Number of players 

Each EEZ represents a single player in the decision-theoretic game. Each player chooses a 

harvest effort level in their corresponding EEZ, and, depending on the management scenario, 

possibly in the high seas. Profit in an EEZ goes exclusively to that EEZ player, while profits 

from harvesting the high seas are distributed among the players in proportion to their high seas 

harvest effort levels. We considered a range of players, N=1-50, to reflect the fact that some 

marine fishery species have wide ranging distributions and other do not, as well as the fact that 

some coastal areas contain many small EEZs while other areas contain fewer larger EEZs.  

 

Solution approach 

 

We focused on steady-state economic payoffs.  Solutions were obtained by solving for the Nash 

equilibrium of the game among the N players, where each player simultaneously chooses the (set 

of) harvest effort level(s) that maximizes private profit to that player, taking as given the 

management scenario and harvest effort levels chosen by the other players. 

 

We modeled a total of four different scenarios for high seas management: Two scenarios when 

the high seas are open to fishing and two scenarios when the high seas are closed to fishing.  

Within each scenario, a large range of parameter values were considered. 

 

When the high seas are open to fishing, we considered two scenarios: one that limits harvest in 

the high seas to the countries whose EEZs are traversed by the stock, and a second scenario that 

allows open access high seas harvest by an unlimited number of fishermen. In the latter scenario, 

the high seas represent a true commons, open to all and owned by none, thus the stock in the 

high seas is expected to be harvested down to the zero marginal profit density set by θ (though in 

the EEZs it will not be as heavily exploited). Taking this as given, each of the N players chooses 

a harvest effort level for its EEZ that maximizes the player’s profit, given the decisions by the 

other players. We termed the solution “HS open (OA)”. In the other high seas open scenario, 

each player has two choice variables: harvest effort in its EEZ and harvest effort in the high seas. 

The choices are determined concurrently and simultaneous among all players. We termed the 

solution “HS open (N)” to indicate that N players are competing on the high seas.  

 

When the high seas are closed to fishing, we considered two scenarios: one in which the players 

comply with the high seas closure, and a second scenario in which compliance with the closure is 

imperfect (i.e., there is poaching in the high seas). In the second scenario we considered positive 

harvest levels in the high seas by the players in the system, up to a maximum level equal to that 

found in the scenario HS open (N). The level of compliance was mediated by 0 ≤ C ≤ 1, in which 

harvest in the high seas by a player is (1 – C) multiplied by the player’s harvest level in the high 

seas under HS open (N). Thus setting C=1 allows for no poaching (100% compliance), and 

setting C = 0 returns the solution to HS open (N). Taking C as given, the players choose harvest 

effort levels in their respective EEZs to maximize their private profits. Note, when C > 0 profit 
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from poaching the high seas is included in each player’s choice of EEZ harvest level. For the 

baseline analyses presented in the main text we set C=1; in the SI we show implications of 

closing the high seas across the full range of compliance values 0 ≤ C ≤ 1. 
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